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We present a Monte Carlo �MC� scheme that makes it possible to perform efficient simulations of dense
systems of self-avoiding polymers on a lattice. We show that the method is particularly useful to simulate dense
systems of polymers with functionalized end groups. We compare the efficiency of the scheme with the
configurational bias MC method and indicate the regime where the present approach is the method of choice.

DOI: 10.1103/PhysRevE.75.036708 PACS number�s�: 05.10.Ln, 82.20.Wt, 82.35.Gh

I. INTRODUCTION

Polymer simulations are often time consuming because
the natural dynamics of polymers is slow. For this reason,
many Monte Carlo methods have been developed that
sample the configurational space of polymeric systems by
carrying out efficient “unphyiscal” trial moves, i.e., moves
that do not correspond to the slow natural motion of poly-
meric chains, yet do preserve the Boltzmann distribution
�see, e.g., reptation �1,2�, pivot moves �3�, configurational
biased Monte-Carlo �CBMC� methods �4�, connectivity-
altering moves �5�, hyperparallel tempering �6�, wormhole
moves �7�.� In spite of the great variety in computational
schemes, there are situations where polymer simulations are
still very inefficient. This is particularly true in the case of
polymers that can bind to heterogeneous surfaces. It is, for
instance, time consuming to compute the free energy of a
system of polymers that can either be nonadsorbing or form
bridges and loops between surfaces.

Below, we describe a grand-canonical Monte Carlo tech-
nique that is particularly efficient for simulations of poly-
mers that interact strongly with surfaces. The basic idea is to
use the statistics of non-self-avoiding walks to grow self-
avoiding walks �SAWs� on a lattice. While there exists no
“cheap” method to enumerate the number of SAW chain con-
formations in a given system, efficient algorithms exist to
count the number of polymer conformations that correspond
to ideal and nonreversible �NR� random walks. NR walks are
random walks that exclude 180° reversal: i.e., retracing the
last step is excluded. We can count the number of NR walks
using the so-called moment-propagation �MP� scheme �8�.
To be more precise, during a trial move we enumerate all NR
walks for one polymer, while keeping the positions of all
other polymers fixed. The exact enumeration of NR walks
implies that if there is only a single acceptable conformation
for the additional polymer, it will be included in the enu-
meration. However, some acceptable NR configurations may
not be self-avoiding and will therefore be rejected at a later
stage.

This prescreening of acceptable configurations greatly en-
hances the success rate of particle-insertion moves. In fact,
as we will show, the present method becomes much more
efficient than the CBMC method at high densities. Below, we
explain how we can incorporate the number of NR walks in
a lattice-based CBMC scheme and use this scheme to grow
self-avoiding chains. We will demonstrate that the MC ac-

ceptance rule satisfies detailed balance. Finally, we show a
number of results for nonadsorbing and for telechelic chains,
on the one hand to validate the present method and, on the
other, to quantify its relative performance with respect to
other existing schemes.

II. METHOD

Consider a regular lattice with coordination number z. We
assign a set of z numbers to each lattice site. Each number
represents a weight that is related to one of the neighbors.
Let i and j be two neighboring sites on the lattice.
���i ; j→ i ; l� is defined as the Boltzmann-weighted number
of nonreversible walks of length l, which end at site i along
the bond j→ i. Hence ���i ; j→ i ; l� can be viewed as the
partition sum of a single NR chain that has its end segment
along the link i− j. As NR walks cannot retrace their last
step, it is necessary to label not simply the number of walks
arriving at site i, but also the lattice site last visited. For
instance, if we wish to calculate ���i ; j→ i ; l+1� knowing
the corresponding weights for walks of length l we should
exclude those walks that went form i to j in the previous step

���i, j → i;l + 1� = � �
j���j��

���j, j� → j ;l�	��i,0� , �1�

in which �j� is defined as the set of z nearest neighbors of site
j, and by �j�� we mean the conformation-dependent set
which excludes the last step �site i in the above case�. ��i ,0�
is defined as the Boltzmann weight due to the interaction of
a monomer at site i with other polymers or with external
interactions, such as walls. This Boltzmann weight is a mea-
sure of the accessibility of site i for a monomeric unit �chain
of length 0�. As an example, for hard monomers, ��i ,0�=0
when the site is occupied and 1 when it is empty. It is then
sufficient to know ��i ,0� for all lattice sites i to calculate all
the weights for any length.

The weights �� determine the likelihood of growing a
nonreversible walk with a fixed length l coming from a
specified direction. Using these weights in the insertion al-
gorithm will introduce a bias that facilitates the finding of
acceptable conformations for the polymer to be inserted. It
would, of course, have been possible �in fact, easier� to cal-
culate the number of ideal random walks and their corre-
sponding weights. However, as very few ideal walks are
completely NR, the subsequent step in the algorithm would
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reject most of the walks thus generated, because at some
points, they retrace their steps. For this reason, the use of NR
weights is more efficient.

Insertion algorithm. Having computed all weights
���i1 , j→ i1 ;n� for n=0,1 , . . . , l, we can now start inserting
the self-avoiding chain, using these weights as a bias. Lattice
sites from which there emerge large numbers of NR walks
will be favored over those that spawn none, or only few. In
what follows, we will assume that nonbonded monomers of
the same chain cannot occupy the same lattice site, but do
not interact otherwise. If that is the case, self-avoidance ef-
fects only come into play upon growing the 4th polymer
segment �at least, on a simple cubic lattice�. However, it is
straightforward to generalize the present approach to the case
where intrachain interactions are longer ranged. We will also
assume that all the polymers are of the same length. We
generate a trial conformation of a chain with fixed length l
following these steps:

�1� The first monomer i1 is selected with probability

p1 =

�
j��i1�

���i1, j → i1;l�

Qef f
.

The sum in the numerator is a sum over all z neighbors of
site i1 and it gives the total number of nonreversible walks of
length l terminating at site i1 from different directions. Qef f is
the total number of NR walks of length l in the system of M
lattice sites:

Qef f = �
i=1

M

�
j��i�

���i1, j → i1;l� . �2�

The above expression simplifies to Mz�z−1�l−1 for an
empty lattice containing M sites.

�2� The second monomer is selected from one of the z
neighbors of i1, called i2, with a probability

p2 =
���i1,i2 → i1;l�

�
j��i1�

���i1, j → i1;l�
.

�3� The third monomer is selected from one of the neigh-
bors of i2 with probability

p3 =
���i2,i3 → i2;l − 1�

�
j��i2��

���i2, j → i2;l − 1�
.

�4� The fourth monomer is selected from one of the neigh-
bors of i3 with probability

p4 =
���i3,i4 → i3;l − 2�

�
j��i3��

���i3, j → i3;l − 2�
.

�5� Starting with the fifth monomer we have to take into
account the self-avoidance. The fifth monomer is chosen
with the following probability:

p5 =
���i4,i5 → i4;l − 3�exp�− �uint�i5��

�
j��i4��

���i4, j → i4;l − 3�exp�− �uint�j��
.

The “internal” energy uint�is� accounts for the interactions
with all monomers 1 to s−1, that have been already grown.

�6� Step 5 is repeated until the whole chain is grown �un-
less the growth process terminated in a dead end, due to
intrachain interactions�. The probability of choosing the sth
monomer equals to

ps =
���is−1,is → is−1,l + 2 − s�exp�− �uint�is��

�
j��is−1��

���i2, j → i2,l + 2 − s�exp�− �uint�j��
.

Once we have grown the whole chain, the move is ac-
cepted with the following probability:

acc�np → np + 1�

= min
1,

exp����Qef f�
l=1

N

�exp�− �uint�il���

np + 1
� . �3�

The terms in angular brackets denote the weighted averages
of Boltzmann factors of the internal potential along the
chain, defined as

�exp�− �us�is���




�
j��is−1��

���i2, j → i2,l + 2 − s�exp�− �uint�j��

�
j��is−1��

���i2, j → i2,l + 2 − s�
. �4�

To clarify the meaning of the acceptance rule, we decompose
it into three different parts. The first part, exp���� / �np+1�
comes from the chemical potential or, equivalently, the aver-
age polymer density in the “osmotic reservoir” in contact
with the system. We know this part before growing a chain
or calculating any weight. The second part is Qef f which
comes from the NR guiding weights. To know this part we
have to calculate NR weights before each trial of exchanging
a new chain. However this part does not depend on the spe-
cific configuration that we grow. The only part in the accep-
tance argument that depends on the configurations is the
product term. If we had ignored self-avoidance affects in the
NR chain, the terms in Eq. �4� would have been equal to
unity and the acceptance probability would have been deter-
mined only by Qef f.

The main difference between the new biased scheme and
CBMC is the presence of non-local guiding weights ��. In
general, in a CBMC scheme a trial conformation will be
generated using local conformation-dependent weights. In
our scheme these weights carry long range information about
acceptable conformations of the whole system. This facili-
tates the growing process and will increase the acceptance
rate. In the next section, we show that the proposed algo-
rithm satisfies detailed balance.
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Now consider the situation in which a chain is randomly
selected to be completely removed. First, we remove the
chain and recalculate the guiding weights ��. Then we re-
construct the same old configuration monomer by monomer.
At each step we calculate the weighted average of uint which
is defined in equation �4�. After the whole chain has been
retraced we will remove it with the probability:

acc�np + 1 → np� = min
1,
np exp�− ���

Qef f�
l=1

N

�exp�− �uint�il���� .

�5�

We considered several ways of improving upon the above
algorithm. Since we know some parts of the acceptance ar-
gument before trying to grow a configuration, we could split
the rejection criterion in two or three parts. This might in-
crease the computational efficiency as we can reject a
“doomed” trial configuration at an early stage. However, it
turns out that splitting the acceptance procedure in parts is

not helpful for dense systems—and it is precisely for these
systems that the present approach is most competitive. For
this reason, we used the acceptance rule in the form given in
Eqs. �3� and Eq. �5�.

III. DETAILED BALANCE

The acceptance rule in Eq. �5� should satisfy detailed bal-
ance �DB�. Let us define ��np→np+1� as the probability of
generating a new configuration, and acc�np→np+1� as the
probability of accepting it and let ��np+1→np� and
acc�np+1→np� denote the corresponding quantities for the
reverse move. DB implies that

PB�np���np → np + 1�
PB�np+1���np + 1 → np�

=
acc�np + 1 → np�
acc�np → np + 1�

, �6�

where PB�np� �PB�np+1�� denotes the Boltzmann weight of
the configuration with np �np+1� polymers. Looking back at
the insertion algorithm we can derive ��np→np+1� by cal-
culating the probability of the new configuration.

��np → np + 1� = �
s=1

l

ps =

�
j��i1�

���i1, j → i1;l�

Qef f

���i1,i2 → i1;l�exp�− �uint�i2��

�
j��i1�

���i1, j → i1;l�exp�− �uint�j��

���i2,i3 → i2,l − 1�exp�− �uint�i3��

�
j��i2��

���i2, j → i2,l − 1�exp�− �uint�j��

�
���is−1,is → is−1;l + 2 − s�exp�− �uint�is��

�
j��is−1��

���is−1, j → is−1;l + 2 − s�exp�− �uint�j��
¯ .

We can rewrite the above equation in a simple form using
Eqs. �1� and �4�:

��np → np + 1� =
exp�− �Uint�

Qef f�
s=1

l+1

�exp�− �uint�is���

,

where Uint=�suint�is� denotes the total internal energy of the
chain. By inserting ��np→np+1� in Eq. �6� we recover the
acceptance rule that we have used in the insertion algorithm.

IV. EFFICIENCY

A. Wall-wall effective pair potential

To validate the present method, we first applied it to com-
pute the depletion interaction due to non-adsorbing, self-
avoiding polymers between hard walls. This system provides
a convenient yet nontrivial test of our algorithm, as Bolhuis
et al. �9� and Tuinier et al. �10� have calculated the depletion
interaction of SAW polymers between hard walls using con-
figurational bias MC, over a wide range of polymer densities.
The depletion attraction can be computed by determining the

grand-partition function �, at fixed chemical potential �. For
each separation between two walls a thermodynamic integra-
tion relates the grand-partition function �, to the average
number of particles in the system �N�����,

kBT ln ���,d� = �
−�

�

�N�����d��. �7�

The depletion interaction follows by subtracting the bulk
contribution to the grand potential and the contribution due
to two non-interacting surfaces. In what follows, we denote
the radius of gyration of the polymers by RG. The overlap
concentration �* will be defined as 1/vp, in which
vp=4/3	RG

3 is the effective volume of a single polymer coil.
Systems with concentrations well below �* are considered to
be dilute. Here, we report results for three densities and com-
pare the results with those reported in Refs. �9,10�.

We carried out grand-canonical MC simulations for self-
avoiding polymers of length l=100. The polymers were
simulated on a cubic lattice between two hard walls. Several
simulation were carried with different spacing between the
walls. In the direction parallel to the walls, we employed
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periodic boundary conditions. The lateral size of the periodic
box was 50�50 lattice sites. Hard-core repulsions were
defind to exclude conformations where two monomers oc-
cupy the same lattice site. For the Monte Carlo moves we
used the “wormhole method” of Houdayer �7�. The method
described above was used for polymer insertion and deletion.
We calculated the average number of particles as a function
of chemical potential. We started from a very dilute regime
�corresponding to �=−�� to get a correct estimation of �.
When the surface separation is large, kT ln � contains only
the bulk contribution �that can be computed for a system
without walls� and the constant contribution due to two non-
interacting walls, 2
wA, where A is the surface area of the
hard wall. Hence, by comparing kT ln � for a bulk system
and a system with the same number of lattice sites, but en-
closed between two hard walls, we immediately obtain 
w.
Figure 1 shows the results of these simulations for three dif-
ferent concentrations. Within the regime where scaling argu-
ments are valid, the depth and range of the potential depend
only on the radius of gyration and concentration. As ex-
pected, the depth of the potential increases with increasing
polymer density. In view of the large difference between the
results of Refs. �9,10�, our results appear consistent with
both �unfortunately, neither paper quotes error bars�. Our
data are closest to those of Ref. �10�. We note that, in order
to reproduce the bulk densities of Refs. �9,10� for a chain
with length 100 we assumed RG�6.476 as was calculated by
Nickel �11�. Our error estimates in Fig. 1 have been calcu-
lated by taking into account the statistical errors in integra-
tion, fitting and subtracting.

Compared to the CBMC method, MP has a higher inser-
tion rate per MC trial move; in the above case, it is some 100
times higher. However, the CBMC method is much less time
consuming. We performed the same simulation with the
CBMC method to compare the efficiency and found the

CBMC to be about 5000 times faster than MP in the above
case. With both methods higher densities can be simulated.
For chains of length L=100 densities up to 3�* are feasible.
To conclude, with the MP method we can reproduce the ear-
lier CBMC results. However, for the specific problem of
nonadsorbing polymers between hard walls, CBMC is
clearly the method of choice.

Although MP fails to bring an improvement for systems
with only hard core interactions, it turns out to be more use-
ful in problems with different kinds of interactions. MP is far
more efficient in identifying rare configurations with very
low energy �i.e., with large Boltzmann weight�. A good ex-
ample is a system of polymers with strongly interacting end
groups. Such polymers can bind to each other or to specific
binding sites on surfaces. A case in point is the binding of
DNA chains with single-stranded end segments, to colloids
coated with complementary single-stranded �ss� DNA. Such
polymers can form bridges between colloids or form loops
on single surfaces. The interactions between surfaces are the
combination of bridging attraction, steric repulsion of the
loops or dangling polymers, and depletion of the free linkers.
In order to compute the effective interaction free energies
between the surfaces, it is crucial, yet difficult, to sample
well equilibrated systems. Here the advantage of the present
moment-propagation scheme over CBMC becomes clear.

B. Tethered polymers

In order to test the efficiency of MP on the above-
mentioned class of problems, we performed simulations on
systems with end-associating polymers between two walls.
Apart from the end-group interactions, the system is the
same as the one described in the previous section. Each poly-
mer is considered as a SAW chain which in this case can
attach to the surfaces with its terminal groups, due to a
strong, short-ranged attraction. In what follows, we will con-
sider the specific case that the two walls are identical. This
implies that polymers can either form loops by adsorbing
both their ends on one wall, or form bridges by attaching to
both surfaces. In addition, the polymers may have one or two
end groups unbound. The range of the binding interaction is
set to one lattice spacing, meaning that the binding sites are
placed next to the hard wall. The surface grafting density �s
measures the fraction of binding sites at each layer. The
binding energy �b is defined as the depth of the attractive
potential. Other parameters such as the bulk density � and
the separation between the hard walls affect the computa-
tional efficiency. Most of the existing methods fail to equili-
brate systems at high densities. Aslo finding bridged confor-
mations is increasingly difficult at higher densities,
especially when the separation between the surfaces is large
compared to Rg �because then the most favorable links are
highly stretched�.

Figure 2 shows a typical example of the difference in
performance between CBMC and MP methods. The results
shown in this figure correspond to a situation where the
grafting density �s=0.02, which corresponds to 50 sites per
wall in our case. We chose a relatively large binding energy:
�b=10kBT. Such large values are not unphysical: for in-

FIG. 1. �Color online� Depletion interaction for athermal, self-
avoiding lattice polymers between unstructured hard walls. The
strength of the depletion interaction is expressed in units kBT /RG

2 .
The three sets �lines� correspond to three different densities 0.26�*,
0.62�*, and 1.01�*, where �* denotes the overlap concentration
�see, text�. The parallel shadowed lines indicate the errorbars. The
corresponding data points of Refs. �9,10� are indicated as squares
and circles.
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stance, the hybridization free energy with which DNA
strands bind to ssDNA coated colloids is in this range. For
instance, the hybridization of ssDNA of 14 bases is in the
range of �25–30�kBT �12�. In our simulation every chain has
two interacting ends, i.e., the energy of a bound configura-
tion is 2�b=20kBT. The bulk monomer volume fraction,
�mon=0.23. As can be seen from the figure, the CPU time
needed for equilibration is much less when using the MP
method than with the CBMC method. In fact, the CBMC
method seems to fail to equilibrate the system, even for the
longest runs. We note that the two methods approach equi-
librium in a very different way. Starting from very dilute
initial conditions, the MP scheme first grows bound configu-
rations. In most cases, these bound configurations reach their
equilibrium value even faster than those that are free. The
reason why the MP scheme favors configurations with higher
Boltzmann weight in the selection process is that the
Boltzmann-weighted numbers �� �see Eq. �1�� provide infor-
mation about accessible configurations. By contrast, the
CBMC method initially fills the system with dangling and
free polymers. This makes it subsequently more difficult to
reach the equilibrium density of bound configurations.

To check the efficiency of our method we performed
simulations for three different grafting densities �s=0.02,
0.2, and 1.00, and different binding energies �b / �kBT�
=5,10. We also studied the system both in a narrow gap d
=3, and at larger distances like d=8, and we tried different
bulk densities.

On the basis of these simulations, we reach the following
tentative conclusions: At high grafting densities the MP
scheme is less useful. This comes about because in equilib-
rium all polymers will be bound. Then all configurations
have the same energy and there is no need for a scheme
�such as MP� that will identify rare configurations that have
a much higher Boltzmann weight than most others. As one

might expect, both methods become inefficient at high den-
sities and large wall-wall separations. However, the results
show that increasing polymer density affects the CBMC
method much more adversely than MP. We compared the
two methods at low and high densities in Fig. 3. At high
densities, the CBMC simulation fails to find bound chains,
while MP is much closer to the equilibrated system. The MP
method is therefore the method of choice in cases where
there is a large heterogeneity in binding energies and in sys-
tems where the accessible volume per polymer is small. Both
situations are relevant for the study of selective binding of
biomolecules to specific substrates. Interestingly, the results
shown in Figs. 2 and 3 suggest that the number of bound
polymers is not a monotonic function of density. It first in-
creases with increasing density and then decreases �see Fig. 3
inset�. We can see this effect with the approach presented in
this paper, but not with the CBMC method. Still, we should
caution that, even with the MP method, it is difficult to ob-
tain high statistical accuracy at high polymer densities.

V. CONCLUSION

We presented a biased Monte Carlo method for lattice
polymers based on the moment propagation scheme. The
method uses nonreversible statistics as guiding weights to
grow self-avoiding polymers. We showed that it is feasible to
implement the MP scheme in such a way that detailed bal-
ance is satisfied. In order to test the efficiency of the MP
method, we specifically applied it to two set of problems.
First we computed the depletion interaction between two
plates and compared results with existing data �9�. The re-
sults show that the MP scheme quantitatively reproduces the
known behavior of this model system. However, the MP ap-

FIG. 2. �Color online� Rate of equilibration of the number of
bound �bridge or loop� polymers between two walls as computed
using the MP scheme �squares� and the CBMC scheme �circles�.
The horizontal axis indicates the required CPU time. The spacing
between the two walls is 8 lattice units. The volume fraction of
monomers is 0.23. The fraction of binding sites on the surface,
�s=0.02. The binding energy, �b=10kBT.
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FIG. 3. �Color online� Density dependence of the equilibration
rate of the MP and CBMC schemes. The figure shows the number
of bound �bridge or loop� polymers between two walls as a function
of CPU time. As in Fig. 2, the spacing between the two walls is 8
lattice units. The fraction of binding sites on the surface, �s=0.02
and the binding energy, �b=10kBT. Results are shown for a high
monomer concentration �45%� and a low monomer concentration
�13%�. The inset shows the density dependence of the number of
bound polymers.

LATTICE-BASED MONTE CARLO METHOD FOR… PHYSICAL REVIEW E 75, 036708 �2007�

036708-5



proach is less efficient than CBMC in this case. This situa-
tion is reversed in the case of telechelic polymers between
two plates. We showed that, in particular in the case of
highly heterogeneous surfaces, the MP method is more effi-
cient than the CBMC method. Moreover, the relative advan-
tage of MP is more pronounced at high volume fractions.

The MP scheme can be applied to any regular lattice.
However, the efficiency of the method is sensitive to the
nature of the interactions between monomers. In general the
MP method is expected to be more efficient than alternative
schemes when searching for rare configurations with low en-

ergy. Many problems involving the specific binding of a bio-
molecule �be it a protein or a ssDNA segment� to a substrate
are of this nature.
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